127 research outputs found

    Supporting Flexible Processes with Adaptive Workflow and Case Handling

    Get PDF
    Workflow management technology has profoundly transformed the way complex tasks are being handled in modern, large-scale organizations. However, it is mostly those systems’ inherent lack of flexibility that hinders their broad acceptance, and that is perceived as annoyance by users. In this context, Adaptive Process Management and Case Handling provide two very different paradigms, which both attempt to make process management more flexible and user-friendly. In this paper, we compare strengths and weaknesses of these two paradigms, and point out situations in which each is particularly appropriate. We further outline ways, in which either technology can be enhanced by crucial concepts from the other. This integration of flexibility approaches has the potential to remedy fundamental problems still present in each technology on its own

    Process Mining Put into Context

    Full text link

    When Are Two Workflows the Same?

    Get PDF
    In the area of workflow management, one is confronted with a large number of competing languages and the relations between them (e.g. relative expressiveness) are usually not clear. Moreover, even within the same language it is generally possible to express the same workflow in different ways, a feature known as variability. This paper aims at providing some of the formal groundwork for studying relative expressiveness and variability by defining notions of equivalence capturing different views on how workflow systems operate. Firstly, a notion of observational equivalence in the absence of silent steps is defined and related to classical bisimulation. Secondly, a number of equivalence notions in the presence of silent steps are defined. A distinction is made between the case where silent steps are visible (but not controllable) by the environment and the case where silent steps are not visible, i.e., there is an alternation between system events and environment interactions. It is shown that these notions of equivalence are different and do not coincide with classical notions of bisimulation with silent steps (e.g. weak and branching)

    DECLARE: Full Support for Loosely-Structured Processes

    Full text link
    Traditional Workflow Management Systems (WFMSs) are not flexible enough to support loosely-structured pro- cesses. Furthermore, flexibility in contemporary WFMSs usually comes at a certain cost, such as lack of support for users, lack of methods for model analysis, lack of methods for analysis of past executions, etc. DECLARE is a proto- type of a WFMS that uses a constraint-based process mod- eling language for the development of declarative models describing loosely-structured processes. In this paper we show how DECLARE can support loosely-structured pro- cesses without sacrificing important WFMSs features like user support, model verification, analysis of past execu- tions, changing models at run-time, etc

    An evolutionary approach for business process redesign - Towards an intelligent system

    Get PDF
    Although extensive literature on BPR is available, there is still a lack of concrete guidance on actually changing processes for the better. It is our goal to provide a redesign approach which describes and supports the steps to derive from an existing process a better performing redesign. In this paper we present an evolutionary approach towards business process redesign and explain its first three steps: 1) modelling the existing process, 2) computing process measures, and 3) evaluating condition statements to find applicable redesign best practices . We show the applicability of these steps using an example process and illustrate the remaining steps. Our approach has a formal basis to make it suitable for automation

    Patterns-based Evaluation of Open Source BPM Systems: The Cases of jBPM, OpenWFE, and Enhydra Shark

    Get PDF
    In keeping with the proliferation of free software development initiatives and the increased interest in the business process management domain, many open source workflow and business process management systems have appeared during the last few years and are now under active development. This upsurge gives rise to two important questions: what are the capabilities of these systems? and how do they compare to each other and to their closed source counterparts? i.e. in other words what is the state-of-the-art in the area?. To gain an insight into the area, we have conducted an in-depth analysis of three of the major open source workflow management systems - jBPM, OpenWFE and Enhydra Shark, the results of which are reported here. This analysis is based on the workflow patterns framework and provides a continuation of the series of evaluations performed using the same framework on closed source systems, business process modeling languages and web-service composition standards. The results from evaluations of the three open source systems are compared with each other and also with the results from evaluations of three representative closed source systems - Staffware, WebSphere MQ and Oracle BPEL PM, documented in earlier works. The overall conclusion is that open source systems are targeted more toward developers rather than business analysts. They generally provide less support for the patterns than closed source systems, particularly with respect to the resource perspective which describes the various ways in which work is distributed amongst business users and managed through to completion
    corecore